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0SJ. 2^ Abstract

In this paper the integer programming formulations

of optimum network synthesis problems are demonstrated to be computationally-

feasible by actually obtaining all the optimum NOR gate networks and

NOR-AND gate networks for three variable switching functions. (80

representative functions of equivalent classes by permutation and negation

of variables. ) The algorithm used for solving the integer programs

is the implicit enumeration algorithm which was tailored to our problem

[91with algorithmic and programming gimmicks. The total computation

time for these 80 functions on the IBM 360/751 was 110 minutes for NOR

gate networks and ^k minutes for NOR-AND gate networks. The algorithm

which was further modified by taking into consideration the inherent

structures of NOR gate networks showed a significant improvement of

computation time. With this second algorithm, all the optimum networks

under fan-in and fan-out restrictions for the odd parity function which

had not been computed before, were computed in 6 minutes and oq seconds.

All the optimum NOR-AND gate networks for each of 80 three

variable switching functions were also tabulated.



Optimum Network Design Using NOR and NOR-AID Gates By Integer Programming

1. Introduction

Based on the integer linear programming approach discussed in the

previous papers , optimum combinational networks of NOR gates

and those of NOR-AND gates have been synthesized. This paper presents

computational results. The integer programming algorithm used for

solving those problems is the implicit enumeration method which is

modified and it is described in detail elsewhere . The algorithm

is further tailored to our problems by making use of the particular

structures of our problems, improving the computational efficiency greatly

over the first algorithm.

In this paper all the optimal networks of three variable switching

functions with NOR gates and those with the combination of NOR-AND gates

are exhausted by integer programming approach. The computation time on

IBM 360/751 with the H level FORTRAN IV compiler for NOR networks for all

three variable switching function (80 representative functions of equivalent

classes by permutation and complementation of variables.) is 110 minutes,

and it is further improved by the factor of about 10 times by using the

above second algorithm. It takes 5^- minutes for synthesizing optimum

NOR-AND combination network for all three variable functions. This

result may suggest the computational feasibility of integer programming

approach and encourages further investigation.



2. Integer Programming and Implicit Enumeration

This section presents the outlines of the integer programming

problem and implicit enumeration algorithm for solving it. For detailed

description, see the references [6] [9] for example. The computer code

used for the network synthesis is discussed in the reference [9]. It

is a result of simplicication and modification of the original implicit

enumeration algorithm [l] [5] [6] [7] in order to improve computational

efficiency.

An integer programming problem with n unknown variables and m

constraints is in general stated as follows:

Minimize c x

(2.1)
subject to b + A x > 0,

where c is an n-dimensional vector of non-negative constants, "B" is an

m-dimensional vector of constants and A is an (m x n) matrix of given

coefficients, and x is an n-dimensional vector of variables. In our

case, all variables x are integers which assume only 1 or 0. Sometimes

this is refered to as the zero-one integer programming problem.

The implicit enumeration algorithm has been computationally

proved to be one of the most efficient methods for solving this type of

zero-one problem. It implicitly enumerates all the 2 solutions without

explicitly and exhaustively examining all of them, and picks up the

best feasible solution.

Let us start with several definitions. When all the variables in

x are assigned 1 or it will be called a solution . If a solution

satisfies the constraints A x + b > 0, it will be called a feasible solution

and if not, an infeasible solution . A feasible solution that minimizes

c x is an optimum feasible solution . A partial solution S is defined as



an assignment of "binary values to a subset of the n variables. Any

variables which are not assigned are called free variables . A completion

of a partial solution S is a binary assignment to all free variables.

Let us outline the implicit enumeration algorithm as it is shown

in figure 2.1. With a given partial solution S and the incumbent

solution (the feasible solution having the smallest value of the objective

function obtained thus far), the block entitled "CHK-IEQ" is entered. At

this point, examine whether some of the free variables must be 1 or

if each inequality is to be satisfied. Scanning through the inequalities

until no more free variables are assigned, S with these free variables

assigned becomes a new partial solution S . Next the partial solution

S is checked to determine which of the following 3 cases occurs.

(1) Feasible: The completion of S obtained by setting all

free variables to is found to be feasible. It is compared with the

incumbent and the better of the two is maintained as the incumbent. The

2
backtrack procedure is initiated to obtain a new partial solution S

by changing some of the assigned variables according to a certain rule.*

(2) Infeasible ; If at least one inequality is not satisfied by

S whatever binary values are assigned to the free variables, then S

is discarded immediately by initiating the backtrack procedure. The back-

2
track procedure forms a new partial solution S from S .

(3) Augment S : If neither of the above two cases occur, a free

2
variable is assigned to 1, forming S . The choice of this variable greatly

affects the convergence and it should be made according to the type of

problem being solved.

[7]
* The backtrack procedure was first proposed by Glover . A

detailed explanation can also be found in [6], [9] and will not be

described in this report.



2
After replacing S with S , the entire procedure is repeated by

reentering the block "CHK-IEQ".

Fig. 2.1 Implicit enumeration algorithm

(Augment S )

i_
AGMT - VAR

Augement S by

assigning a free

variable to obtain

„2

CHK - IEQ

Check inequalities

with S . Assign
free variables and
form S

(Feasible)

Keep the better solution

as the

incumbent

(infeasible)

_i
Backtrack

2
forms S



By cycling through this procedure repeatedly, the computation

results in the implicit enumeration of all possible solutions. When

the computation terminates, the incumbent is the optimum solution. The

checking procedure of each inequality such that one of cases (l), (2)

and (3) is quickly identified is explained in [9]. The implicit

enumeration algorithm converges in a finite number of steps, but the

efficiency of the algorithm heavily depends on the nature of an individual

problem. Our computational experience shows that tailoring the block

labeled AGMT-VAR in Fig. 2.1 (the subroutine which augments the partial

solution when (3) occurs) to a given particular problem speeds up

the convergence. Some aspects of our AGMT-VAR tailored to NOR gate

network synthesis will be discussed in Section k.



3. NOR Network Synthesis

All the optimum feed-forward NOR gate networks of three variable

switching functions are realized by using the formulation described in

[11]. Networks are optimum in the sense that the number of NOR gates

in the networks is minimized first and the number of interconnections

among gates and from external variables is minimized second. The same

problem was already solved by L. Hellerman by actually exhausting

all the network configurations and then finding the best network among

them for each function. When the problem is solved as an ordinary integer

program, however, the computation time for all three variable switching

functions (80 representative functions of equivalent classes by permutation

and complementation of variables) is about 110 minutes* on the IBM 360/751

with the H level FORTRAN IV compiler. This compares favorably with

Hellerman' s result consuming about 26 hours on the IBM 7090.

Now, the basic configuration for a NOR feed-forward network is

shown in Figure 3«1« Let us explain the additional inequalities, which

are introduced solely to reduce the computation time by precluding the

redundant connections or by partially precluding networks which are

equivalent by permutation of gates. The basic formulation of these

additional inequalities is the same as that of [11].

The problems we solved have three external variables x_, x
p , x„.

Let the connection from x_ to the i-th gate be v_ . Let the connection

from the i-th gate to the k-th gate (i < k) be cp . Since only completely
IK

specified functions are considered, each input vectors x = (x , x
p , x..)

is numbered as x J>
j = 1, 2, . . ., 8 from 3T ' = (0, 0, 0) through

x = (l, 1, l). The output value of the i-th gate for the j-th input

vector 3T"3 ' is denoted as T-?'. And let p:j*' denote cp., P: J '.
i lk lk i

* In Section k, this computation time is further reduced by designing
a sophisticated AGMT-VAR algorithm.

7



Fig. 3^1 Feed-forward network

cp,

IE



Inequalities for characterizing a feed-forward network with R NOR

gates which realizes the function f(x) is as follows.

For k - 1, 2, ..., R-l

- E v*x (

,

d) - 2 P^ } > -U (1- p[
J)

)

£=1 ^ l
i=l

1K *

V „k „(0')
, V Jj) -. 1 TT -d(J)

(3-D

,\ *J 'i
+ = Pir > 1 " U P

k
X>=1 1=1 = 1, 2, ..., Oj

where U is a sufficiently large positive number such that the upper

inequality is non-restrictive if p) = and the lower inequality is

non-restrictive if P, ' = 1.
k

For the last gate (the R th gate)

Z v* xft - E p^ > if f (x^
j)

) = 1

i=l
l £

i=l
lR "

(3.2)

z v* x (
.
j) + s P^ :> i if f (x^

j)
) = o

i=l ^ ^ i=l

j = J-^ ^- ^ • •

»

) o i

And in place of the relation p.. = cp., p., we have the inequalities
IK IK 1

4
i]

- *ik + <$ > - 1

p:*" + cp.. - 2 p^ > o
i

Tik lk —

(3.3)

k = 2, 3, -.., R

j = 1, 2, . . ., 8.



The procedure used in this paper to obtain all optimum solutions

proceeds from R = 1 and increases R by 1 each time until the feasible

solution is reached. The objective function used is the number of

interconnections

R k-1 3
k

S ( 2 cp + Z O, (3.U)
k=l i=l

1K
i=l

l

and therefore its minimization results in the minimum number of

interconnections as the secondary objective. In other words, if we

find the first feasible R and then exhaust all the solutions which

minimizes the objective function (3«^)> all the optimum solutions are

obtained.

Seemingly the implicit enumeration algorithm has a tendency that

the smaller the region of all solutions, the faster the convergence.

Hence our effort was directed to preclude unnecessary solutions by adding

extra inequalities so that the solution region becomes smaller without

prohibiting any necessary optimum solutions. These additional inequalities

essentially consist of two types; one is to preclude unnecessary network

configurations and the other is to partially suppress the geometrically

equivalent networks (i.e. those with permuted gates). They are listed in

the following. Proofs are omitted.

(l) A NOR gate ( B in Fig. 3.2 (a)) which has only one input

from another gate ( A) with only one output, and which is not the

output gate is not permitted in an optimum network, because the same

7 7^^^ Fig. 3.2

& -®-d>"~@-*- -^5©""^ Cascaded

IX

(a) (b)

10

connections



function can be realized with two fewer gates, as shown in Fig. 3*2 (b).

Hence each gate except the last has at least one input from the external

variables or at least two inputs from the other gates, which is expressed

by an inequality:

3 k
k-1

2 E v- + 2 cp > 2

£=1
Z

i=l
lk

(3-5)*

K. — J_j d % • • • « i\— J_«

Note that this condition does not hold in general when the fan-in

restriction is imposed.

(2) Consider any subnetwork which has only one gate which has outputs

to gates not in the subnetwork (Fig. 3* 3).

Fig. 3' 3 Ordering of inputs

~-»fc

(1
J

-^
~-fc—

^

1

I
T )—( k \

» r^ v-^
~-w L>—--^

subnetwork

Assume the subnetwork consists of 1 through k. Let the k-th gate is the

output gate of this subnetwork. Then we can order the interconnections

to the k-th gate from the other gates in the subnetwork such that

cp, < cp < . . .< <p . In other words, inequalities:

k-1 R

^-^ +
i=i A****

k-1 R

\-2 k - Vl k
+ Z Z \ikd, k k-±,k

i=1 j=k+1
ij

(3.6)

k = 3, h, ..., R,

The notation g is defined to be when B < A holds.

11



where the double sum ZZ is added in each inequality because it is assumed

that the subnetwork has outputs only from one gate (in other words if all

the gates in the subnetwork except the k th gate have no output to the

outside of the subnetwork, i.e. if ZZ cp. . = 0, then (3»6) yields

In the above discussion the subnetwork was assumed to consist of

gate 1 through k. The extension to the general case in which the gates

are not consecutively numbered starting from 1 is possible.

(3) Suppose that three gates are connected as shown in Fig. 3«^>

Fig. 3«^ Triangular interconnections

no other output

where the J th gate has no outputs except cp . It is easily proved that if
JK

all of cp. ., cp , cp are 1, the network is not optimum, thus introducing
ij -*-K Jk

inequalities:

*« +
*ik

+
*dk *

2 +£ *Jt
(3.7)

t=j+l

i < j < k < R .

Even if the i th gate in Fig. 3.^ is replaced by an external variable

x,, the above property is still true. Then from (3«7) we obtain:

12



vi- v
i

+ v^ 2 +
R
E
t+k
t=j+l

<!>•.,

(3.8)

j < k < R

I = 1. 2, 2L

(U) This condition is an extension of case (3). Consider any subnetwork

which has no outputs except those to the k th gate and where the i th gate

and the k-th gate is connected, as shown in Fig. 3' 5* Assume that the

subnetwork consists of the (i+l)st to (k l)st gates.

Fig. 3*5 Generalized triangular interconnections

no other output except
> to the k th gate

Then the interconnections from the i th gate to the subnetwork are all

redundant and therefore can be deleted. This condition is written by an

inequality:

k-1
E q>. .

k-i-1 R
< + U ( E E

^i+h i
+ ^ik^

h=l j=k+l
14*' J lk

(3.9)

i = 1, 2, ..., R-2

k = i + 2 ..., R,

k-1
where U > E cp. . for all i and k.

j=i+l

Even if the i-th gate is replaced by an external variable, the

above property is still true. In this case the inequality is:

13



k-1 . k-i-1 R
E y] <0 + U ( S E (p + (l-v*))
j=i+l * h=l j=k+l

1+n,:) ^

(3.10)

£=1, 2, 3
l=lj C. y m • • y R—£_

iv-- 1-rt j • • « -^5

k-1
where U > Z v* for all i and k.

j=i+l

In the above discussion it was assumed that the subnetwork

consists of the gates of the consecutive numbers (i.e. from the (i+l)st

to (k-l)st gates) but an extension to the more general case where the

subnetwork consists of gates of non-consecutive numbers is possible.

(5) A certain geometrical symmetry is also investigated. For example,

Fig. 3' 6 shows three gates connected to the last gate.

Fig. 3» 6 Symmetry of a subnetwork

©
In this configuration, it makes no difference to which of three gates the

(R-l), (R-2), and (R-3)> the (R-if)th gate is connected. Hence we can

impose an ordering such that

Ur-1 - ^R^R-S ^ %4,R-3
(3oll)

in order to preclude part of the gate configurations which are equivalent

by permuting gates. This particular condition is represented by,

11+



VU,R-3 2 VM-2 + (1 * V3,e'
+ (1 " "fe-2,R>

+ (1 - U>'
(3-12)

T'-

S-U,H-a * \4,R-! + (1 - tP
R-3,E ) + (1 - \-2,R> + (1 " Vl,!1

Similar types of symmetry conditions are extensively considered and a

number of such inequalities are employed in the actual computation.

However, the details of each type is not given here.

(6) If the interconnection between the i th and (i+l)st gates is known

to be 0, these two gates are geometrically equivalent and their output

connections can be ordered.

Hence we can first order their connections to the last gate as

%R * *i+l,B. (3 - 13)

If it turns out that cp. _ = ep. then the connections to the (R-l)th

gate can be ordered as

"i.R-l * "W-l. {3 - lk)

This argument continues until cp ^ cp. (k > i+l) eventually

holds. After that, no ordering on the connections is permitted. This

sequential condition is expressed by the inequality:

R-i . , R-i
S 2 D

"±
cp. . .• Z 2 3

"1
cp. _ . . + U cp. . _ (3-15)

i = 1, 2 } • • • j R~2

.

15



(7) Each gate has at least one output, because the network is assumed

to have exactly R gates. This condition is expressed by

R
2
j=k+l % * X (3.16)

for every k = 1, 2., . .„, R-l.

The size of the problem is given in Table 3.1, both with a selected

subset of the additional inequalities and without them.

TABLE 3.1 Size of NOR network formulation

Without additional inequalities With additional
inequalities

R Number of
integer programming
variables

Total number of

inequalities
% of non-zero
coefficients*

Total number of
inequalities

2 23 ko 11+.58 -

3 52 88 7.12 -

h 90 152 Ml 169

5 137 232 2.91 265

6 193 328 2.11 1+15

7 258 kko 1.60 716

* For the function f(x) = 0. For other functions, the sizes of figures
are almost equal to those in the table.

16



The formulations of the problems may be characterized by the

following properties:

(1) There are more inequalities than variables. Therefore the

solution region is usually very small. In fact, many problems were

found to be infeasible.

(2) The non-zero coefficients in the inequalities are fairly

sparse. This feature was extensively utilized in our computer program

of the implicit enumeration algorithm ^ J in order to speed up the

computation.

(3) The objective function has only coefficients of or 1.

[91
This also simplifies the algorithm and is fully utilized .

The implicit enumeration algorithm was used on the NOR synthesis

problem and the results are given in TABLE 3*2. The algorithm was set

to enumerate all optimal feasible solutions. It also assumed no fan-in

and fan-out restrictions. The computation took approximately 110 minutes

on the IBM 360/751 for aH 80 representative functions. All networks were

identical to Hellerman's.

We examined what are influential factors on the speed of our

program. The effect of additional inequalities on speed-up was remarkable.

Some problems tried for the R=5 formulation was speeded up by the factor

of 5 in computation time.

As explained in[n] many types of network restrictions such

as fan-ins and fan-outs can easily be added to the synthesis problem in

the form of inequalities, without the necessity of changing or complicating

the program. This is one of the advantages of the integer programming

formulation. When the fan-in restriction is imposed, the restrictions

17
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of (3*5) can no longer be included since it is possible to have a gate

with a single input from another gate.

The excution times both with and without fan-in and fan-out

restrictions, however, are on the average about the same for functions

tested (although the computation time for each function is often

different. )

.

Also by simply changing one statement in the program, we can

modify the algorithm so that a single optimum solution is obtained

rather than exhausting all the optimum solutions. For 6 gate functions

tested, the computation time decreased by 10-20$.

Further considerable speed-up was gained by a more sophisticated

modification of the implicit enumeration method by taking into account

the physical structure of a network. This will be explained in the

next section.

* See also the argument on Fig. k.2 in Section U.
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k. Improvement of NOR Network Synthesis by the All-Interconnection
Network Formulation

In the following computer program, we use a somewhat different

integer programming formulation to characterize the feed-forward network,

in addition to the reconstruction of AGMT-VAR. In other words, a network

where an interconnection is permitted between every pair of gates (but

the output gate has no output interconnections to other gate) is assumed

and expressed in inequalities in the same way as [11]. Then inequalities

are added to break loops which may result by solving the integer program

with the above all-interconnection network . This modification is employed

because, we can preclude a large number of partial solutions which are

equivalent simply by permuting gates and which are difficult to preclude

by other means.

This all-interconnection network formulation turns out to be very

powerful for speeding up the NOR network synthesis.

The AGMT-VAR in Fig. 2.1 must be accordingly modified such that

free variables of a partial solution be assigned, starting with the free

variables associated with gate R and proceeding to gate R-l, then R-2,

until reaching gate 1. This procedure also insures that there is no

isolated subnetwork consisting of more than one gate. There may be various

conceivable versions but we made the new AGMT-VAR based on Davidson's

desirability order of gates, since it looked appropriate. This indicates

the flexibility of our synthesis method by integer programming.

Recently Davidson applied the "branch and bound method*" to the

NAND network synthesis, without describing the network by inequalities.

* The implicit enumeration algorithm might be regarded as a synonym

of the branch and bound method. But Davidson's algorithm and ours are

quite different. Davidson's method is to construct a NAND network

directly without inequalities and ours is to solve inequalities derived

from the network.

20



He achieved a remarkable reductior of computation time, by judiciously

making use of the intrinsic properties of a NAND gate. He defined the

types of gates and determined empirically the desirability order of the

types of gates. By checking all possible partial networks with very

elaborate procedures, the optimality of the obtained network is guaranteed.

The types of gates and the desirability were incorporated with

some modifications in our new AGMT-VAR. Our new computer program is

more complex than the previous one. (The reduction of computation time

was made at the expense of the complexity of the program. ) It appears

still simpler than Davidson's because the inequalities are still used

and these inequalities provide simultaneously much information about

the current partial solution without complicated program procedures

(i.e. information about types of gates or covering condition which will

be defined in the following)

.

The principle of this approach is based on the property of an

NOR gate that :

Property 1: If p[^ - 1, then

p^
} =o (k.i)

for all i = 1, 2, . .., k-1

must hold, and

Property 2: p) = 0, then there exist at least one i

(1 < i < k-l) or I (1 < I < 3)

p[p = 1 or v
k

such that P.£ = 1 or v. x» = 1

,(d)As defined before, P^ is the output value of the k th gate for the j th

input vector, p. is the input value of the k th gate supplied from

21



the i-th gate for the j-th input vector, and v. is the connection of

the i-th external variable to the k-th gate.

Given a partial solution S in the course of the implicit enumeration,

we have a partially constructed NOR network which may or may not lead

to an optimum network eventually. Our modification of the algorithm

is simply the reconstruction of the subroutine AGMT-VAR (see Fig. 2.1)

such that it augments the partial solution with a variable selected

according to the above property 2 of NOR gate in order to derive a

reasonably good next partial solution from the current one. It is

difficult to know what is good and there is no proof that the following

procedure gives a good solution. However, our computational experience

showed that it was considerably better than the AGMT-VAR which had been

designed for general use and explained in the earlier sections.

Now a few definitions are given. A gate is said to be isolated

if it has no output connected to other gate in the current partial

solution. In other words, if all cp k*i are or *, the gate i is
IK,

isolated. (The i th gate is currently isolated but could be connected by

assinging 1 to a free variable.) If P). is in the current partial

solution, let us associate with it one of the types which will be defined

-X--X-

in the following. Let us define the types , "COV", "G*-" and so on as

follows.

* Note that during the computation the variables can take on 3

values (zero), 1 (one), and *(unassigned. i.e. a free variable)

** These types are almost identical to Davidson'

s

L but slightly

different. And the number of types in this paper is fewer. G*

VC*, GC*, G*C*, NWG, approximately correspond to Davidson's EXP,

VAR, FCN, EXF, NF, respectively. ISL and others which will be

defined later are new concepts.
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COV; If there exist i or I such that pjjj
- 1 or X* vl = 1 (i.e. COVered)

G*; If there exists i such that cp.. =1 and p' J ' = *.
' lk i

(G* stands for the Gate i with P. unassigned.

)

VC*; If there exists I such that xy' = 1 and v. = *

(VC* stands for the Variable x\ = 1 with Connection being *.)

GC*; If there exists i such that P."" = 1 and (p.. = *, when the
l lk

gate i is not isolated (Gate i with P. = 1 and Connection being *)

G*C*: If there exists i such that P:«" = * and cp., = *,
' l lk

where the gate i is not isolated (Gate i with P. = * and

Connection being *)

NWG; If there exists i such that P. ' = * and cp.. = *. where the gate
' i lk

i is isolated (NWG stands for NeW Gate.).

Since each P J may satisfy more than one of the above conditions

(i.e. each P J may be associated with more than one type), let us order

these types by desirability as

COV, G*, VC*, GC*, G*C*, NWG. (k.2)

And the type of P. is defined as the most desirable one among those

which satisfy the above definition, if P} = in the current partial

solution.

The motivation for defining these is to find a gate or external

variables which leads to Property 2 of the earlier discussion. If

Property 2 is satisfied or equivalently, if the type of P^ is COV, P^.
J '

is said covered . In the desirability order (k.2), G*, for example, is

more desirable than G*C* since it is more likely that the covering may

be achieved by assigning 1 to * of the gate which was already connected.
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(i.e. no new gate added.) But it is rather difficult to see intuitively

that G* is more desirable than VC*. (^.2) was determined empirically

Ik]
by Davidson such that the computation time is minimized. In this

sense the order of desirability may be susceptible to the type of gates

with which the network is to be synthesized. In general, it can be

determined only by trial-error programming experiments.

Note that by our implicit enumeration algorithm, every partial

solution automatically satisfies Property 1 because otherwise it is

rejected when the check of the partial solution is done in CHK-IEQ of

Fig. 2.1.

As an auxiliary concept to the following definition of the type

of partial network, let us define types of gates ;

ISL: If the gate is isolated (iSoLated).

LTG: If the gate is not of ISL type and the outputs pj/" for all j * s

are or * (LaTently useful Gate in the sense that the covering

condition may be met later. )

.

If a given gate (the k th) satisfies neither of the

above definitions, then the least desirable type according

to order (k.2) among the types of P// for all j's such that

P J = is defined as the type of gate k.
K

If the types of all the gates in the current partial solution

are ISL, LTG or COV, then the current partial solution is feasible ,

i.e. the resulting feasible network is easily derived. If this is the

case, the backtrack (Fig. 2.1) procedure is entered after comparing this

feasible (network) solution with the incumbent.

* In our design procedure where the number of gates in a network
starts at 1 and then increases, the feasible case occurs only
when the types of all the gates are COV.
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Let the desirability of types of gates be defined as

ISL, COV, LTG, G*, VC*, GC*, C*C*, NWG. (1+.3)

-*

Then the type of partial network is defined as the least desirable

type of gate among all gates.

Fig. k. 1 (a) shows a partial network corresponding to a current

partial solution. Each P J = is shown with its type for x of Fig. U.l

(t>). For example, P.: is of type GC* because by setting cp = 1, F~

(2) (2)
can be covered. P.; is of type G*C* because of Pp = *. The type of

each gate is shown. Obviously the type of this partial network is G*C*

which is the type of gate 3*

Let us describe the procedure in the new AGMT-vAR. If the type of

partial network is one of ISL, COV, LTG, the current partial solution

is feasible because we use Procedure I in Section 5 of [11]. Otherwise

let us identify P. which defines the type of this partial network.
K.

In the definition of the types G*, VC*, GC*, G*C*, and NWG, free variables

are associated with P. such that if these free variables are set to 1,
k

P, is covered (e.g. in the case of VC*. P
n

is covered if v„ is set to
k k 11,

1, i.e if the corresponding free variable is set to 1. ). This free variable

is then specified so that p]_ is covered. For example, Fig. h.1 shows

(2) (2)
that P.: is identified according to the type of partial network. P_

is of type G*C* and can be covered by connecting gates 2 and 3? i-e by

(2) **
setting cp = 1 and specifying P^ = 1 . Other types are similarly

* The least desirable is chosen in the definition because unless
the gate having the least desirable is made to satisfy the
properties of NOR gates, the partial network is not feasible.

** In actual programming, this is done by augmenting the current

(o) (2)
partial solution by p\% - ! rather than cp = 1 and P^ ' = 1.

(2)
Subsequently cp and P^ are set to 1 when the partial solution

undergoes CHK-IEQ.
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(3)

(J)

WG
vc*

*

vc*

*

*

vc*

vc*

LTG

vc^

1

vc*

-X-

,(d)

GC*

G*C*

1

G*C*

*

1

G*C*

G*C*

G*C*

cov

G*

cov

cov

1

tt

cov

cov

f

1

1

cov

1

cov

cov

1

1

cov

,(d)

Fig.
,(o)

U.l (a) Example of types of P<^ = 0, gates, and the partial network.
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J x
l *2 x

3

1

2 1

3 1

h 1 1

5 1

6 1 1

7 1 1

8 1 1 1

Fig. U.l (b) Assignment of values to x̂J)
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* (i)treated: An appropriate p in the c?se of G*, GC*, G*C* types or

an appropriate v„ in case of VC* is set to 1. However the type NWG

is treated differently. If a gate is of type NWG, the isolated gate

which has the largest gate number is identified. Let it be y. Then

p
v

is set to 1 where P defines the type of partial network. Setting

p , to 1 will force cp
, and P JJ to 1. thus covering P, . However if

yk rk 7 k

p r_ (i.e. p ^_ is not a free variable), all solutions with anyone of

isolated gater, connected to gate k have been investigated and do not need

to be checked again. This follows from the fact that gate y and any

other isolated gate are equivalent with respect to the paritial network

(i.e. non-isolated part) since any isolated gate can be connected to

any other gate. This approach eliminates the permutation of gate labeling

which is inevitable with the feed-forward network. Of course, if we

discover that p was already set to 0, then we can simply abandon the
v K.

current partial solution and go to the backtrack procedure.

A comment is given on the case in which the type of the partial

network is VC*. If the types is VC*, sometimes more than one external

variable can be connected. In our algorithm, among all possible external

variables, the external variable which covers the largest number of

P =0 not yet covered is connected to the gate.

This new AGMT-VAR is used in place of AGMT-VAR shown in Fig. 2.1

and assigns a free variable to 1 according to the type of the partial

network. Then CHK-IEQ is applied as before. Other part of algorithm are

exactly the same as the general case discussed in the earlier sections

and in [9L except that the following objective bound check is added to

AGMT-VAR to further speed up the computation.

* Note that p:j^ = cp p;^
iK IK K
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Given a partial solution, a lower bound of the objective function

value is estimated according to the rules based on the following properties.

If this bound exceeds the objective value of the incumbent, the current

partial solution can not give any better solution than that and accordingly

it is discarded. (The rest of computation for the current partial solution

is skipped and backtrack is immediately applied). The bound estimation

is programmed by using the following properties of the network:

(1) Exactly R gates are assumed to be used in the network. In other

words, each gate has at least one input connection and at

least one output connection.

(2) According to condition (l) of Section 3> each gate has either

at least one input connection from external variable or at

least two input connections from other gates.

(3) The number of gates each of which is solely devoted to expressing

x. (i.e. a gate has only one input which is an external variable

x.) is at most three.
1

(U) If the type of gate is GC*, G*C* or NWG, the gate needs

at least one more interconnection from another gate, as seen

from the definitions of these types.

(5) If the type of partial network is VC*, the gate whose type

defines the type of partial network needs at least one more

connection from an external variable. If this single external

variable does not cover all the P?. which are of type VC*, we

need to add at least one more external variable.
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This bound estimation is included in AGMT-VAR and whenever it

demonstrates that the current partial solution can not give any better

Lbl e solution than the incumbent the backtrack procedure is performed

immediately.

With all these modifications added, all 15 functions which can be

realized with 6 gates were tested on the R= 6 formulation. The improvement

was remarkable. The average number of iterations per function is 136.3

and the average computation time for each function is ^.°9 seconds which

is favorably compared with the result in Table 3-2 in Section 3 run with the

general purpose AGMT-VAR, in which 95^ iterations and h-2.26 seconds on

the average were necessary for each function.

If the fan-ins and fan-outs restrictions are considered, the rules

based upon the above properties (2) and (3) must be modified. All other

rules are unchanged. For example let us assume that each gate has maximum

fan- ins and fan-outs of 3«

Let us examine Figure U.2.

Fig. k.2 Modification due to fan- in

and fan-out restrictions
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The single input to gate j is not allowed only if

o R—

1

R—

1

S (vi + v£)+ 2 q> + E cp, , < 3 (U.U)

t=l * * t=l
t:L

t=l
tk ""

tH tij

o R—

1

R —

1

and E (v* + v^) + E cp

ti
+ 2 cp

tk
< 3

#

(fc-5)

t=l t=l t=l
t+1 tt=j

t*i

Property (3) also must be modified.

Using the rules "based on these modified properties, the odd parity

function x © Xp © x_ which requires 8 NOR gates when the fan-ins and

fan-outs are limited to 3 was' solved.

Since there is only one function to be solved, the structure of

an optimum network for the function x_ © x © x is taken into consideration.

In other words, this function is symmetric in all the three variables

x_, Xp and x , and accordingly the interconnections from x. to the last

gate are ordered as follows.

7 7
and if v^ = v ' then

vl>vl>v[ (k.6)*

6 6
v
^+1

> V
£

J = 1, .2. (^.7)

* It can be easily shown that the last gate (the 8th gate) has no
external variables connected, if a given function can not be
expressed as a conjunction of the product ®f literals and a

disjunctive expression.
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((k.'j) could "be continued to the gate numbers lower than 6. But the

continuation was not incorporated in our program. ) Also two interconnections

cjVn and cp ~ are assumed to be 1. This is guaranteed "by the fact that the

networks which are constructed by adding one gate to the output of optimum

7 NOR gate networks of x © x © x , give no better realization of

x Q, x @ x than those obtained by solving the 8 gate formulation.

The problem has 395 variables and 1012 inequalities including

additional inequalities. All optimum solutions are shown in Fig. U.3«

[13]
The network (c) of Fig. k.3 is the same as that found by Tangiguchi et al.

The computation took U822 iterations with network (a) occuring

at the 1368th iteration, network (b) at l6U7th iteration, and solution (c)

at the 3052th iteration. The total computation took less than 6 minutes

and 30 seconds on the IBM 360/751* When the program was modified so that

only one of the optimum solution is to be found, the time was reduced to

5 mil utes 15 seconds. These computation times are a considerable reduction

with respect to the results of Table 3*2 in Section 3»

The reduction of the computation is due to the desirability order

of types and the all-iterconnection formulation. The all-interconnection

network formulation appears to contribute more to the reduction than the

desirability order. The desirability order probably has to be changed

when different types of gates are to be used.

Our computation times are about the same as Davidson's, though

exact comparison is very difficult because computers used are different and

simple programming gimmicks may further make changes in computation times.
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x 2

Xi
x2

(a)

(b)

. (c)

Figure U.3". All optimum networks for x. @ Xp © x.
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Probably one of the advantages of our approach is ease of programming

effort. Since we can fully use the information associated with variables

of the inequalities, the procedure to determine the types of P, , gates

and eventually the partial network is fairly straightforward and simple.

Also Property 1 of the NOR gate is automatically taken care of by the

CHK-IEQ routine, thus eliminating the procedure for checking this property.

Another advantage is the fixed amount of storage needed throughout the

computation. In Davidson's "branch and bound algorithm" the amount of

storage often grows as the computation proceeds. Thus additional programming

must be done in order to recalculate needed information or to use secondary

storage.

Because of great improvement of the all-interconnection network

formulation over the approach of Section 3* improvement in computation

time even in the case of multiple-output network design also can be

expected with the all-interconnection network formulation.

The accurate comparison of the exhaustive method, Davidson's and

ours, in terms of the program complexity, computational efficiency,

ease of programming and all other aspects, is difficult at this stage

because a number of factors should be considered for the comparison and

the data obtained so far is not sufficient. Here we tried this new

approach to show the flexibility of the implicit enumeration algorithm.

In other problems also, it is quite likely that we can achieve a great

improvement by considering the intrinsic properties of the problem and

incorporating appropriate modifications of the algorithm. Some examples

[91
of this approach will be found elsewhere

* Our integer programming approach can be extended to the logical
design of an optimum sequential network and to the diagnosis of

a network, different from Davidson's.

3^



5. NOR-AM) Network Synthesis

One of the important advantages of integer programming formulation

is that we can solve a wide variety of problems by simply changing the

set of inequalities. Networks composed of NOR and AND gates are represented

in inequalities according to the formulation in [12]. Of course the

optimum networks are also interesting in their own right. All the optimal

networks for 80 three variable switching functions are tabulated under the

same optimality criterion as NOR networks.

All the notations in this formulation are the same as NOR network

case except that we have to introduce new variables indicating whether

each gate is NOR or AND. These variables are

9
k , k=l, 2, ..., R. (5.1)

9 = 1 (0) shows that the k th gate is NOR (AND).

The basic set of inequalities describing a feed-forward network

of R gates is as follows. This formulation is found in [12].

For k = 1, 2, ..., R-l

3 k t*\ k-1 t*\ 3 k
k-1 , v

= V
i *i

+ = pik * =
v
i
+ = *ik " U (l"P

k
j) " U 9

k£=1 i=l z=l i=l

3 k (,\ k-1 , x 3 k k-1
f

v

-2 v x^ ;
- 2 p^ ; > -2 v - 2 cp +1-UP JJ -U0

i=l
l l

i=l
1K

i=l
Z

i=l
Ik k K

-2 vj xl^- 2 P^.P > - U(l-pf^r U (1-0J
i=l ^ ^ i=l

lk ~ k k

S v
k

x(j)+ 2 ~ (j) > " ^^
£=1 l l

i=l
2 v* x^+ 2 p^ > 1 - U P

k
j; - U (l-0

k ) (5.2)

3 — -Lj £- j . . . > O.
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It may be easily seen that the first twc inequalities are for an AND

gate and the others for a NOR gate, depending on the value of 6

associated with these inequalities.

For the last gate, if f(x^) = 1,

3 rj ( *\ R_l /jN 3-n R-l
Z v x^ + Z p\^ > S v* + S p - U
i»i * *

i=l ^ i=l ^ i=l
lR R

ji^'^'S^- '^ 1" 9^ (5 * 3)

and if f(x^) = 0,

3 R M n R-l /.x 3 R
R-l

- E v*, x^ j - 2 p^ > -I v - E p + 1 - U e
R

4=1 * l
1=1 4=1 * i=l

Z v (A (A E P^ } > i-u(i-eJ (5.U)

4=1 * * 1=1
1R " R

for d = 1, 2, ..., 8.

The relation p.? = <P P. is expressed "by

- p'*" - cp.. + p.P > 1
l lk lk —

P
i

+
^ik " 2 p

±k - ° (5#5)

k = 2, 3, ..-, R

i = 1, 2, ..., k-1

3 = 1* ^ > • • • y o.

Additional inequalities are also incorporated to reduce the

computation time. All of those additionals inequalities which were

used in the all NOR network case are included except the geometrical

symmetry restrictions given by (5) of Section 3« In addition the following

two types of inequalities were added.
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(l) Input interconnections

Each AND gate has at least two input interconnections. This

constraint is given by

3 k
k-1

Z V
£ + E p

ik ^ 2 " 6
k

i=l * i=l
lK *

Fig. 5-1 Triangular interconnection

(5.6)

(2) Triangular interconnections

Again consider three gates connected together as shown Fig. 5.1«

Contrary to the NOR network case, if either of the gates j and k is AND

gate, at least one of the three connections cp. .,
ro , cp must be

^-3 !k jk

even if the j-th gate has outputs other than cp . This condition is

given by

cp. . + cp + cp < 2 + .

^ij jk ik -
j

cd. . + cp.. + cp < 2 + 9
nij

Yjk ik - k

(5.7)

i < j < k < R.

When the i th gate is replaced by an external variable,

v
i
+vv^ +

(5.8)

A + A + ^^ 2 + \
j < k < R

I = 1, 2, 3.
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Together with these additional inequalities ( some of additional

inequalities based on the properties which have been discussed are not

incorporated because of their excessive number.
) , all the optimal

NOR-AND combination networks for each function are solved. The entire

computation took about ^k minutes on the IBM 360/751, using a program

which includes the general purpose AGMT-VAR. All functions are realized

with not more than six gates. The size of each problem and computation

time are listed in Tables 5*1 and 5.2. The computation time is

graphically given in Fig. 5*2 as well as the NOR network case.

The effect of additional inequalities was remarkable. For the

R=3 case the computation time was reduced 6 times by incorporating the

additional inequalities; and for the R=U case 18 times. Incorporation

of other additional constraints such as the constraint that each AND gate

should have at least one NOR gate connected to its output, will reduce

the computation time further, though these were not actually tried.

Also contrary to NOR gate network, no effort was made to improve

the computational efficiency of the integer programming algorithm. Of

course a significant reduction of computation time can be expected by

modifying the algorithm as discussed in Section k.

A comparison of computation time with NOR gate networks is

shown in TABLE 5«3 where the ratio of the computation time of the NOR-

AND network case to that of NOR network case discussed in Section 3

is listed.
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TABLE 5.3 Ratio of computation time
>

—

R

Computation Time Iterations

Feasible Infeasible Feasible Infeasible

k k.O 6.3 3.8 k.l

5 9.8 Ik.k 8.1 10.2

6 11.3 9.2

On the average a function can be realized by NOR-AND combination

network with O.85 fewer gates than that of the NOR network case. The

number of interconnections is also reduced by 1.5 on the average. All

the optimal networks for three variable function are tabulated in

Appendix A.

The tabulation also gives all the optimal networks by NAND-OR

combination by the following procedure: (l) take the dual of a given

function f, (2) find optimal networks for the dual function f by NOR-

AND combination and (3) replace NOR by NAND, and AND by OR. These are

optimal realizations of f by NAND-OR combination.
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6. Conclusion

Two logical design problems, one with NOR gates only and the

other with NOR-AND combination, formulated as integer linear programs

were solved by using the implicit enumeration algorithm. NOR gate

network synthesis is very important from an engineering view point and

has attracted much attention. Integer programming approach to this

problem is proved to be computationally feasible and is faster than

Hellerman's exhaustive method. Advantages of integer programming approach

include its versatility and simplicity to handle a variety of gate types,

a variety of network restrictions such as maximum fan-ins restriction,

and also various objectives, without changing the algorithm.

Simply changing part of the algorithm i.e. the AGMT-VAR, we can

have a program of high speed at the sacrifice of the ease of programming,

a program of simplicity and generality at the sacrifice of speed, and

a wide range of programs between these two extremes.

Due to the principle of the implicit enumeration algorithm, we can

modify and augment the algorithm so that the intrinsic properties of the

problem can be fully used. Section h explored this possibility along

with Davidson's work and obtained a improved result in NOR gate network

synthesis. Furthermore three networks for the odd parity function were

proven to be optimum.

By simply changing the inequalities, different problems can be

solved. NOR-AND gate networks were thus synthesized by using different

set of inequalities. Also we believe that this is the first tabulation

of all the optimum networks with NOR and AND gates for all three variable

functions.
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Appendix A: Tabulation 0:.' Optimum NOR-AND Networks

Here listed are all the optimum networks for each of all functions

of up through three variables, using NOR and/or AND gates.

The networks which have the minimum number of interconnections

and connections among the networks with the minimum number of gates are

chosen as optimal network.

The procedure for obtaining the optimum network diagram for a

given function follows that of Hellerman's [8]. A function can be

represented by a truth table as shown below, by specifying the values of

f , f
p , ..., fn where f , ..., f~ show the values of the given f for

input vectors in the same rows, a, b and c denote the variables of f.

a b c

f
l

f
2

1

f
3

1

f
k

1 1

f
5

1

f
6

1 1

f
7

1 1

f
8

1 1 1

Let us write eight binary numbers f
_,

, .... f as follows.
1 o

f
8

f
7

f
6

f
5

f
U

f
3

f
2

f
l

Sfc—

v

' * y— ' " v '

0. 0.
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grouping the f.'s as shown, we obtain three octal number . This

octal number is used throughout Appendix to identify a function.

In Tables A2 and A3, only representatives of equivalence class

obtained by permutation of variables are listed, reducing 256 functions

into 80 representatives. The representative of a given function f can

be easily derived by using Table Al, which is taken from Hellerman [8].

The procedure is illustrated by an example.

Suppose that the function f has the number 321. The entry for

this number in Table Al is 5*213 • This means that f is equivalent

to function 213 hy applying permutation 5 which is (ac) as also shown

in Table Al. Table A2 shows that function 213 has optimum networks

with network numbers U9 and 56. Then Table A3 gives us the actual

optimum networks of function 213. To obtain optimum networks of 321,

we apply the inverse of permutation 5j which is also (ac), to these

networks in Table A3.

Twelve of the 80 three -variable functions listed are degenerate

in the sense that they are independent of at least one variable. The

network diagram numbers for the degenerate functions have the suffix D.

They are grouped together at the beginning of Table A3.

Table A3 shows all the optimum networks obtained for each function

without imposing fan-in restrictions. However all the networks except

that of function 026 are optimum even if the fan-in restriction that

each gate can have at most three input interconnections is imposed.

Function 026 needs one more gate if the above fan-in restriction is

imposed. Optimum networks in this case are shown in Fig. Al.
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Note that if a given function is symmetric in some variables,

say a and b, then, among all the optimum networks obtainable by permuting

these symetric variables, a and b, only one network is listed in Table

A2 and Table A3. The rest of networks can be obtained by simply exchanging

the connection from the external variables according to the permutation

of variables.
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1 2 3 1+ 5 6
-1*000 1*001 1*002 -1*003 3*002 -3*003 1*006

10 1*010 1*011 -1*012 1*013 -1+*012 i+*0l3 1*016
20 2*002 -2*003 2*006 2*007 3*006 3*007 1*026

30 1*030 1*031 1*032 1*033 U*032 l+*033 1*036
1+0 2*010 2*011 -6*012 6*013 •2*030 2*031 6*032

50 1*050 1*051 1*052 1*053 1*051+ 1*055 1*056
6o -2*012 2*013 2*016 -2*017 2*032 2*033 2*036
70 6*05^ 6*055 6*056 6*057 -1*071+ 1*075 1*076

100 3*010 3*011 3*030 3*031 -3*012 3*013 3*032
110 3*050 3*051 i+*05i+ l+*055 3*052 3*053 l+*056

120 -5*012 5*013 5*032 5*033 3*016 -3*017 3*036
130 3*05^ 3*055 -3*071+ 3*075 3*056 3*057 3*076
lUo 2*050 2*051 2*051+ 2*055 5*05l+ 5*055 -2*07U
150 1*150 1*151 1*152 1*153 3*152 3*153 1*156
160 2*052 2*053 2*056 2*057 5*056 5*057 2*076
170 2*152 2*153 2*156 2*157 3*156 3*157 1*176
200 1*200 1*201 1*202 1*203 3*202 3*203 1*206
210 -1*210 1*211 1*212 1*213 1+*212 1+*213 1*216
220 2*202 2*203 2*206 2*207 3*206 3*207 1*226
230 1*230 -1*231 1*232 1*233 l+*232 l+*233 1*236
2 1+0 -2*210 2*211 6*212 6*213 2*230 -2*231 6*232

250 1*250 1*251 -1*252 1*253 1*251+ 1*255 1*256
260 2*212 2*213 2*216 2*217 2*232 2*233 2*236
270 6*2 51+ 6*255 6*256 -6*257 1*27U 1*275 1*276
300 -3*210 3*211 3*230 -3*231 3*212 3*213 3*232

310 3*<5° 3*251 l+*25l+ l+*255 -3*252 3*253 l+*256

320 5*212 5*213 5*232 5*233 3*216 3*217 3*236

330 3*251+ 3*255 3*27^ 3*275 3*256 -3*257 3*276

3^0 2*250 2*251 2*251+ 2*255 5*25l4 5*255 2*27U

350 1*350 1*351 1*352 1*353 3*352 3*353 -1*356

360 -2*252 2*253 2*256 -2*257 5*256 -5*257 2*276

370 2*352 2*353 -2*356 2*357 -3*356 3*357 1*376

7
1*007
-1*017
1*027
1*037
6*033
1*057
2*037
-1*077
3*033
l+*057

3*037
-3*077
2*075
1*157
-2*077
1*177
1*207
1*217
1*227
1*237
6*233
-1*257
2*237
1*277
3*233

-l+*257

3*237
3*277
2*275
1*357
2*277
-1*377

Explanatory Example
Class of 321 is given by word at intersection of row 320 and column 1,

This says 321 is in class of 213 by permutation 5«

Negative permutation means the function is degenerate.

5*213

Permutation 1 is the identity
Permutation 2 is ( abc)

Permutation 3 is ( acb)

Permutation 1+ is ( be)

Permutation 5 is ( ac)

Permutation 6 is ( ab)

Table Al. Equivalent classes of functions
of three variables.
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Table A2: Catalog of all the optimum NOR-AND networks
of three variable functions.
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Function
(octal)

000

003

012

017

07^

077

210

231

252

257

356

377

001

002

006

007

010

Oil

013

Functional expression

a'b'

a'c

a'

ab' + a'b

a' + V

be

be + b'c'

c

a' + c

b + c

1

a'b'c'

a'b'c

a'b'c + a'bc'

a'b' + a'c'

a'bc

a'bc + a'b'c'

a'b' 4- a'c

Network
number

ID

5D

8D

9D

kD

13D

10D

6d

iUd

15D

3D

11D

12D

7D

2D

1

3

7

15

8

6

5h

61

18

No« of gates

NOR

1

2

1

1

2

1

3

3

3

2

2

1

2

1

2

1

1

3

3

3

AND

1

1

1

1

1

1

1

1

1

1

1

1

1

No. of inter-
connections
and

connections

2

3

3

1

6

3

2

7

7

k

h

3

3

k

k

7

k

k

8

8

5

1

2

2

1

2

2

1

3

3

3

3

2

1

2

2

2

2

2

3

3

3
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Function
(octal)

Functional expression N itwork
number

No. of gates

No. of inter-
connections
and No. of

levels

<

NOR AND connections

22 2 1 5 3

)l6 a'b + a'c k 2 k 2

)26 a'b'c + a'bc' + ab'c' 68 2 3 13 2

ff a'b* + b'c' + a'c' 30 1 3 9 2

)30 ab'c' + a'bc 70 k 1 10 3

1

71 3 2 10 3

88 k 1 10 k

)31 a'bc + b'c' 85 k 1 9 k

)32 a'c + ab'c' 28 2 2 9 2

»33 a'c + b'c' 3k 3 1 7 3

kk 2 2 7 3

36 a'b + a'c + ab'c' 29 2 2 10 2

37 a* + b'c' 17 1 2 6 2

50 a'bc + ab'c 27 3 1 8 2

55 2 2 8 3

51 a'b'c' + a'bc + ab'c 79 3 2 11 3

52 a'c + b'c 11 2 1 5 2

26 1 2 5 3

53 a'b' + a'c + b'c 36 3 1 8 3

5k a'b + ab'c k7 2 2 8 3

55 a'b + a'c' + ab'c lh 3 2 11 3

78 3 2 11 3

56 a'b + b'c 12 2 1 6 2

57 a* + b'c 33 3 1 7 3

i

h3 2 2 7 3

p a'b + ab' + a'c' 35 3 1 8 3

U5 2 2 8 3

J6
a'b + ab' + a'c Ik 2 1 7 2
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Function
(octal)

Functional expression Network
number

No. of gates

No. of inter-
connections
and
connections

No. of

NOR AND levels

150 a'bc + ab'c 4- abc' 80 3 2 11 3

151 a'bc + ab'c + abc' + a'b'c' 101 3 3 Ik 3

152 a'c + b'c + abc' 62 2 2 8 ' 3

153 a'c + a'b' + b'c + abc' 76 3 2 11 3

156 a'c + b'c + be' 13 2 1 7 2

157 a' + b'c + be' 37 3 1 9 3

U6 2 2 9 3

176 ab' + be' + a'c 16 2 1 8 2

177 a' + b* + c' 9 1 1 k 2

200 abc 2 1 3 1

201 abc + a'b'c' 52 3 1 9 3

202 abc + a'b'c 73 1+ 1 9 3

77 h 1 9 3

82 3 2 9 k

90 3 2 9 h

203 abc + a'b' 50 3 1 8 3

206 a'b'c + a'bc' + abc 100 k 2 12 3

10^ k 2 12 k

106 k 2 12 k

109 k 2 12 k

110 k 2 12 k

111 k 2 12 h

112 k 2 12 k

207 a'b' + a'c' + abc 81 3 2 9 3
-J
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Functio]

(octal)
i Functional expression Network

number
No. of gates

No. of inter
connections
and No. of

levelsNOR AND
4
connections

89 3 2 9 k

9h 3 2 9 k

211 be + a'b'c* 51 3 1 8 3

212 a'c + be 31 1+ 6 3

38 3 1 6 3

6k 3 1 6 It

66 2 2 6 k

213 a'b' + be ^9 3 1 7 3

56 3 1 7 3

216 a'b + a'c + be 72 k 1 9 3

86 k 1 9 k

91 3 2 9 k

95 k 1 9 k

96 k 1 9 k

217 a' + be 1+8 3 1 6 3

61 2 2 6 k

226 abc + ab'c' + a'bc' + a'b'c 105 k 2 12 k

227 a'b' + a'c' + b'c' + abc 99 k 2 12 3

102 k 2 12 k

230 ab'c' + be 8k k 1 9 k

87 3 P
9 k

97 3 2 9 k

232 a'c + be + ab'c' 92 k 1 9 k

93 3 2 9 k

?33 a'b' + b'c' + be 57

i

1

3 1 8

,_

3
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No. of inter-
connections

Function
(octal)

Functional expression Network
number

No. of gates and

connections
No. of

NOR AND levels

236 a' c + be + a'b + ab'c' 98 k 2 12 3

103 k 2 12 h

107 k 2 12 k

108 k 2 12 h

237 a' + be + b'c* 69 k 1 9 3

83 3 2 9 k

250 ac + be 10 3 5 2

21 2 1 5 3

251 ac + be + a'b'c' 59 3 1 8 3

253 a'b' + c 20 3 5 3

25^ ac + a'b 32 k 7 3

39 3 1 7 3

255 ac + be + a'c' 58 3 1 8 3

256 a'b + c 63 h 6 h 1

65 3 1 6 k

27U ab 1 + ac + a'b Uo 3 1 8 3

275 ab' + ac + a'b + a'c' 60 3 1 9 3

276 a'b + ab' + c kl 3 1 9 3

277 a' + b' + c 23 2 1 5 3

350 ab + ac + be k2 3 1 8 3

351 ab + ac + be + a'b'c' 75 3 2 11

352 ab + c 25 2 1 5 3

353 ab + a'b' + c 53 3 1 8 3

357 a' + b + c 19 3 5 3

2k 2 1 5 3
:

376 a + b + c 5 2
1

1* 2
J



Table A3 List of all the optimum NOR-AND
combination networks for three variable
switching functions.

NOR

> AND

All
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Fig. Al Optimum networks of function 026
when the fan- in is limited to three.
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APPENDIX B: Ordering of Interconnections

In the feed-forward network formulation gates are uniquely labeled

1, 2, ..., R. Usually there are many representations for the same

configuration of the optimal network simply by permuting the labels on

gates. For example the two networks in Fig. B.l are equivalent under

permutation of gate labels.

L3'

In order to reduce this obvious redundancy many inequalities are formulated

to order the gates.

For an example of such inequalities a list of inequalities for the

6 gate feed-forward NOR network will be presented.

Since the inequalities were not generated systematically, the

list is not complete.

Let us denote (l - cp.) by cp. . where cp. . is 1 if there is an

interconnection from gate i to gate j and otherwise.

Note that the inequalities are for 6 gate NOR networks with

unlimited fan-ins and fan-outs. The inequalities corresponding to an

R gate NOR network with restrictions on fan-ins and fan-outs can be

written in an analogous way.

B-l



1. Order Inputs to the R-th Gate (i.e. output gate )

The ordering of connecting gates 1 through R - 1 to the output

gate R can be specified as cp > cp for all i > j. This follows from
ik — JK

that fact that any circuit with cp > cp . and k < £ can be obtained from

a circuit in which cp^ > cp for all i > j by permutation of gate labeles,
in — JK

k and I.

'26 s 1>36

2. Ordering the Outputs of All Isolated Gates

As was defined previously an isolated gate is a gate which has

none of variables, v.'s and cp ' s representing its inputs and outputs
1 jk

specified to 1. When the isolated gate is connected to the subnetwork,

the isolated gate can often be connected in several ways. Furthermore

the networks resulting from these different ways of connecting the gate

are often equivalent with respect to permutation of the gate labels.

In Fig. B.2 networks (b) and (c) give an example of two different ways

of connecting the isolated gate 3*

Fie;. B.2
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By examining Fig. B.2 we can see that gates k and 5 of the subnetwork

consisting of gates k, 5, and 6 are equivalent with respect to permutation

of gate lables and the connection of gate 3 to gate k or 5 (i.e. network

(b) is equivalent to network (c) if gate labels k and 5 are permuted).

Thus we can restrict cp , < cp for the given subnetwork consisting of

gates k,$ and 6 to prohibit network (c).

The subnetwork (a) in Fig. B.2 can be specified as

^36 + \6 + *
56

(1)

for the following reason. The sum in expression (l) assumes the value

zero if and only if the gate U,5 and 6 are connected as shown in Fig. B.2

fa) and otherwise it is 1 or greater. Thus we can order the pair of

interconnections cp„_ and cp„, under the assumption that the subnetwork
3? 3*+

of Fig. 3' 2 (a) exists. This conditional ordering of gate output inter-

connections can be expressed by the following inequality

^<^
35 +*36

+ \6 + V (2)

Because if the subnetwork exists, the last three terms of (2) becomes

and (2) becomes cp , < cp . Let us call cp , < cp of expression

(2) as the ordering portion and + cp ^ + cp, ^ + cp /- as the subnetwork

specification portion. Note that the subnetwork specification portion

will be positive and expression (2) will be non-restrictive if the

subnetwork described by cp , + -cp, ^ + "cp ^ does not exists.

All the following inequalities in this section can be similarly

interpreted by first examining the subnetwork specification portion
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of the inequality and then observing the ordering required on the pair

of cp. . variables.

a)

5
W 6 **(*)

This subnetwork is denoted by cp,-,- + 9^6 * Assuming this subnetwork

we can get the following inequalities in terms of isolated gates, according

to the above discussion.

Ordering Subnetwork

^35 - % + ^56 + \6

^25 - *35
+ *56

+ \6

^15 - *25 +
^56

+ ^6

^23 - ^h +
^35

+ H + \6

^13 * 'lU
+ % + V + ^6

^!2< <P
13 + *25 + ^6 + \6

*lk $ V2k + ^35 + ^ + ^6
+ ^6

<P
13 < <PlU + ^35 + ^3 + ^56 + ^6

b)

Th is subnetwork is denoted by cp, ,- + cp ^

B-1+



Ordering Subnetwork

'lH * '15

'15 * '25

'lU * '15

'12 * '13

'12 * 'l3

+
'U6

+ cp

36

+ V
3k + Vh6 + h6

+ ^ + ^ + ^6 + '36

+ '12 + ^6 +
'36

+ %3
+ 935 +^ + ^5 + ^6 + ^

+ cp

15
+ cp

23
+ ?

35
+ 92U

+ cp

25
+ wk6 + cp

36

+ *lU + cp

23
+ T

35
+ V

2h
+ cp

25
+ cp

U6
+ cp

36

This subnetwork is denoted by CD •- + cp ^ .

Ordering

'ait * ^25

"23 ^ ^
"13 * "^

^ ^ '15

'13 S V

*L5 * %

Subnetwork

+ '36
+ cp

26

+ '36
+ cp

26

+ .^ + cp

36
+ (p

26

+ ^ + ^36 + ^6

+ 923 + ^6
+926

+ <P
23

+ 9
36

+ cp

26

+ ^ + 936+^6
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a)

This subnetwork is denoted by cp ,» + cp ^

Ordering Subnetwork

*1*S*L5 + $
26

+ cp

i6

'13 ^H* + *26 + cp

l6

V^^is + *26 + cp

i6

3. Ordering the Outputs of a Single Gate

If two gates i and i+1 are not connected (i.e. cp. . = 0), the
1, l+l

same network configuration can be obtained by permuting gate labels i

and i+1. To prohibit this permutation restrictions are placed on the

outputs of gates i and i+1. Let us examine the following inequality

using the terms, ordering portion and subnetwork specification portion

of an inequality which were defined in the previous section:

H>6 + 2cp
2 5

+ ^ ^ Ucp
36

+ 2C
°35

+ ^ +8CP
23

(3)

The subnetwork specification portion of expression (3) is 8cp . The

ordering portion is i+cp g + 2cp + cp , < i+q?
g + 2cp + cp . which expresses

the restrictions
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"26 *V
<P
25 <V if <P26 - ^6 ""I

"feu * '3U
if

"b
=
"35

md
^26

=
*3& '

given the subnetwork di scribed by ty^o' Note that cp is 1 if the

subnetwork does not exist and hence inequality (3) will be non-restrictive

and the outputs of gates 2 and 3 will not be ordered.

The remaining inequalities of this section can be similarly

interpreted.

Ordering Subnetwork

2<P
36

+ <P
35

< 2^6
+ cp^ + lKP

3U

1kp
15

+ 2cp
ll+

+ cp

13
< Ucp

25
+ 2cp

2l+
+ cp

23
4- Scp^

Ucp
26

+ 2cp
25

+ cp
2l+

< licp

36
+ 2cp

35
+ cp

3l+
+ 8cp

23
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